Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    1387
  • Volume: 

    14
Measures: 
  • Views: 

    412
  • Downloads: 

    0
Abstract: 

در این مقاله روشی جدید برای ناحیه بندی تصاویر سطح خاکستری ارایه می کنیم. در این روش ابتدا همبستگی بین روشنایی پیکسل های تصویر و همسایگانشان را به صورت هیستوگرامی دو بعدی در نظر می گیریم. با آنالیز تابع بدست آمده از قطر اصلی این هیستوگرام می توان نقاط آستانه مناسب برای ناحیه بندی را مشخص کرد. با استفاده از ترکیب توابع گوسی قطر اصلی تابع هیستوگرام را مدل می کنیم پارامترهای مربوط به تابع گوسی به کار رفته دراین مدل را به کمک الگوریتم بهینه سازی PSO محاسبه می کنیم. آستانه های روشنایی مناسب برای تفکیک نواحی با توجه به مدل ترکیب گوسی ها بدست می آید. سپس روشنایی تمام پیکسل هایی را که سطح روشنایی آنها در محدوده دو آستانه متوالی می باشد را با آن سطح روشنایی که بیشترین تعداد پیکسل ها را به خود اختصاص داده است جایگزین می کنیم. نتایج حاصله برتری روش پیشنهادی را مشان می دهند.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 412

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    144-149
Measures: 
  • Citations: 

    0
  • Views: 

    223
  • Downloads: 

    80
Keywords: 
Abstract: 

Image Segmentation is a fundamental approach in the field of Image processing and based on user’ sapplication. This paper propose an original and simple Segmentation strategy based on the EM approach thatresolves many informatics problems about hyperspectral Images which are observed by airborne sensors. In afirst step, to simplify the input color textured Image into a color Image without texture. The final Segmentationis simply achieved by a spatially color Segmentation using feature vector with the set of color valuescontained around the pixel to be classified with some mathematical equations. The spatial constraint allowstaking into account the inherent spatial relationships of any Image and its color. This approach provideseffective PSNR for the segmented Image. These results have the better performance as the segmented Imagesare compared with Watershed & Region Growing Algorithm and provide effective Segmentation for theSpectral Images & Medical Images.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 223

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 80 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1998
  • Volume: 

    22
  • Issue: 

    3
  • Pages: 

    381-388
Measures: 
  • Citations: 

    0
  • Views: 

    199
  • Downloads: 

    0
Abstract: 

In this paper the method used for Image compression is based on successive Image Segmentation. The Image to be compressed is segmented into smaller regions and this process is continued until each region can be approximated by a desired parameter so that the error be small enough in each region. In general, each region is an n-gon n where 3 < n < 8 . This method has short coding and decoding times. The coder is tree-structured, thus it is suitable for progressive Image coding.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 199

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

FARNOUSH R. | ZAR PAK B.

Issue Info: 
  • Year: 

    2008
  • Volume: 

    19
  • Issue: 

    1-2
  • Pages: 

    29-32
Measures: 
  • Citations: 

    0
  • Views: 

    994
  • Downloads: 

    1028
Abstract: 

Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an Image. The parameters of the model were estimated by EM-algorithm.In addition pixel labeling corresponded to each pixel of true Image was made by Bayes rule. In fact, a new numerically method was introduced for finding the maximum a posterior estimation by using EM-algorithm and Gaussians mixture distribution. In this algorithm, we were made a sequence of priors; posteriors were made and then converged to a posterior probability that is called the reference posterior probability. Maximum a posterior estimated can determine by the reference posterior probability which can make labeled Image. This labeled Image shows our segmented Image with reduced noises. We presented this method in several experiments.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 994

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1028 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    52
  • Issue: 

    2
  • Pages: 

    1089-1106
Measures: 
  • Citations: 

    1
  • Views: 

    90
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

ZHOU B. | XIAO LI Y. | LIU R.

Issue Info: 
  • Year: 

    2010
  • Volume: 

    9
  • Issue: 

    5
  • Pages: 

    1049-1052
Measures: 
  • Citations: 

    1
  • Views: 

    150
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 150

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

EL ZEHIRY N. | ELMAGHRABY A.

Issue Info: 
  • Year: 

    2009
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    1358-1361
Measures: 
  • Citations: 

    1
  • Views: 

    150
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 150

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2013
  • Volume: 

    4
  • Issue: 

    2 (12)
  • Pages: 

    1-13
Measures: 
  • Citations: 

    0
  • Views: 

    358
  • Downloads: 

    140
Abstract: 

Texture Image analysis is one of the most important working realms of Image processing in medical sciences and industry. Up to present, different approaches have been proposed for Segmentation of texture Images. In this paper, we offered unsupervised texture Image Segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientation) values. The output Image of this step clarified different textures and then used low pass Gaussian filter for smoothing the Image. These two filters were used as preprocessing stage of texture Images. In this research, we used K-means algorithm for initial Segmentation. In this study, we used Expectation Maximization (EM) algorithm to estimate parameters, too. Finally, the Segmentation was done by Iterated Conditional Modes (ICM) algorithm updating the labels and minimizing the energy function. In order to test the Segmentation performance, some of the standard Images of Brodatz database are used. The experimental results show the effectiveness of the proposed method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 358

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 140 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
Author(s): 

Issue Info: 
  • Year: 

    2023
  • Volume: 

    84
  • Issue: 

    -
  • Pages: 

    104791-104791
Measures: 
  • Citations: 

    1
  • Views: 

    16
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

CHAJI N. | GHASEMIAN H.

Issue Info: 
  • Year: 

    2005
  • Volume: 

    3
  • Issue: 

    1 (a)
  • Pages: 

    1-10
Measures: 
  • Citations: 

    1
  • Views: 

    1323
  • Downloads: 

    0
Abstract: 

The watershed transform is a conventional tool for the Segmentation of Images. Watershed Segmentation is often not effective for textured Image regions that are perceptually homogeneous. In this paper we describe a new Image Segmentation algorithm that integrates the measure of spatial variations in texture with the intensity gradients and consists of a number of conceptual stages. In the first stage, texture representation is calculated using vector summation of complex cell responses in different preferred orientations. In the second stage, gradient Images are computed for each of the texture features, as well as for grey scale intensity. These gradients are efficiently estimated using a new proposed algorithm based on a hypothesis model of the human visual system. After that, combining these gradient Images, a region gradient which highlights the region boundaries is obtained. Watershed transform of the region gradients properly segment the identified regions. Adaptive thresholding on rotational texture features is used to the problem of over Segmentation. The combined algorithm produces effective texture and intensity based Segmentation for natural and textured Images.      

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1323

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button